Copied to
clipboard

G = C248D6order 192 = 26·3

3rd semidirect product of C24 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C248D6, C6.262+ 1+4, C32D42, D66(C2×D4), C3⋊D44D4, (C2×D4)⋊18D6, C224(S3×D4), C22≀C24S3, D6⋊D49C2, C232D64C2, C22⋊C424D6, Dic33(C2×D4), (C6×D4)⋊7C22, Dic3⋊D413C2, C123D411C2, D6⋊C411C22, C6.56(C22×D4), C23.14D62C2, Dic34D42C2, (C2×D12)⋊19C22, (C2×C6).134C24, (C2×C12).28C23, Dic3⋊C49C22, (S3×C23)⋊7C22, (C23×C6)⋊10C22, C2.28(D46D6), (C4×Dic3)⋊14C22, C6.D415C22, (C22×S3).53C23, C23.118(C22×S3), (C22×C6).181C23, C22.155(S3×C23), (C2×Dic3).221C23, (C22×Dic3)⋊13C22, (C2×S3×D4)⋊7C2, (C2×C6)⋊6(C2×D4), C2.29(C2×S3×D4), (S3×C2×C4)⋊7C22, (C3×C22≀C2)⋊5C2, (C22×C3⋊D4)⋊8C2, (C2×C3⋊D4)⋊39C22, (C3×C22⋊C4)⋊5C22, (C2×C4).28(C22×S3), SmallGroup(192,1149)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C248D6
C1C3C6C2×C6C22×S3S3×C23C2×S3×D4 — C248D6
C3C2×C6 — C248D6
C1C22C22≀C2

Generators and relations for C248D6
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e6=f2=1, ab=ba, eae-1=faf=ac=ca, ad=da, fbf=bc=cb, ebe-1=bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 1344 in 428 conjugacy classes, 115 normal (27 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×D4, C24, C24, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C22×C6, C22×C6, C4×D4, C22≀C2, C22≀C2, C4⋊D4, C41D4, C22×D4, C4×Dic3, Dic3⋊C4, D6⋊C4, C6.D4, C3×C22⋊C4, C3×C22⋊C4, S3×C2×C4, C2×D12, C2×D12, S3×D4, C22×Dic3, C2×C3⋊D4, C2×C3⋊D4, C6×D4, C6×D4, S3×C23, S3×C23, C23×C6, D42, Dic34D4, D6⋊D4, Dic3⋊D4, C232D6, C23.14D6, C123D4, C3×C22≀C2, C2×S3×D4, C22×C3⋊D4, C248D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C22×S3, C22×D4, 2+ 1+4, S3×D4, S3×C23, D42, C2×S3×D4, D46D6, C248D6

Smallest permutation representation of C248D6
On 48 points
Generators in S48
(1 25)(2 29)(3 27)(4 38)(5 42)(6 40)(7 28)(8 26)(9 30)(10 41)(11 39)(12 37)(13 32)(14 44)(15 34)(16 46)(17 36)(18 48)(19 43)(20 33)(21 45)(22 35)(23 47)(24 31)
(1 13)(2 17)(3 15)(4 16)(5 14)(6 18)(7 19)(8 23)(9 21)(10 22)(11 20)(12 24)(25 32)(26 47)(27 34)(28 43)(29 36)(30 45)(31 37)(33 39)(35 41)(38 46)(40 48)(42 44)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 28)(26 29)(27 30)(31 48)(32 43)(33 44)(34 45)(35 46)(36 47)(37 40)(38 41)(39 42)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 38)(26 39)(27 40)(28 41)(29 42)(30 37)(31 45)(32 46)(33 47)(34 48)(35 43)(36 44)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6)(2 5)(3 4)(7 12)(8 11)(9 10)(13 24)(14 23)(15 22)(16 21)(17 20)(18 19)(25 37)(26 42)(27 41)(28 40)(29 39)(30 38)(31 43)(32 48)(33 47)(34 46)(35 45)(36 44)

G:=sub<Sym(48)| (1,25)(2,29)(3,27)(4,38)(5,42)(6,40)(7,28)(8,26)(9,30)(10,41)(11,39)(12,37)(13,32)(14,44)(15,34)(16,46)(17,36)(18,48)(19,43)(20,33)(21,45)(22,35)(23,47)(24,31), (1,13)(2,17)(3,15)(4,16)(5,14)(6,18)(7,19)(8,23)(9,21)(10,22)(11,20)(12,24)(25,32)(26,47)(27,34)(28,43)(29,36)(30,45)(31,37)(33,39)(35,41)(38,46)(40,48)(42,44), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,28)(26,29)(27,30)(31,48)(32,43)(33,44)(34,45)(35,46)(36,47)(37,40)(38,41)(39,42), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,38)(26,39)(27,40)(28,41)(29,42)(30,37)(31,45)(32,46)(33,47)(34,48)(35,43)(36,44), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)(25,37)(26,42)(27,41)(28,40)(29,39)(30,38)(31,43)(32,48)(33,47)(34,46)(35,45)(36,44)>;

G:=Group( (1,25)(2,29)(3,27)(4,38)(5,42)(6,40)(7,28)(8,26)(9,30)(10,41)(11,39)(12,37)(13,32)(14,44)(15,34)(16,46)(17,36)(18,48)(19,43)(20,33)(21,45)(22,35)(23,47)(24,31), (1,13)(2,17)(3,15)(4,16)(5,14)(6,18)(7,19)(8,23)(9,21)(10,22)(11,20)(12,24)(25,32)(26,47)(27,34)(28,43)(29,36)(30,45)(31,37)(33,39)(35,41)(38,46)(40,48)(42,44), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,28)(26,29)(27,30)(31,48)(32,43)(33,44)(34,45)(35,46)(36,47)(37,40)(38,41)(39,42), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,38)(26,39)(27,40)(28,41)(29,42)(30,37)(31,45)(32,46)(33,47)(34,48)(35,43)(36,44), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)(25,37)(26,42)(27,41)(28,40)(29,39)(30,38)(31,43)(32,48)(33,47)(34,46)(35,45)(36,44) );

G=PermutationGroup([[(1,25),(2,29),(3,27),(4,38),(5,42),(6,40),(7,28),(8,26),(9,30),(10,41),(11,39),(12,37),(13,32),(14,44),(15,34),(16,46),(17,36),(18,48),(19,43),(20,33),(21,45),(22,35),(23,47),(24,31)], [(1,13),(2,17),(3,15),(4,16),(5,14),(6,18),(7,19),(8,23),(9,21),(10,22),(11,20),(12,24),(25,32),(26,47),(27,34),(28,43),(29,36),(30,45),(31,37),(33,39),(35,41),(38,46),(40,48),(42,44)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,28),(26,29),(27,30),(31,48),(32,43),(33,44),(34,45),(35,46),(36,47),(37,40),(38,41),(39,42)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,38),(26,39),(27,40),(28,41),(29,42),(30,37),(31,45),(32,46),(33,47),(34,48),(35,43),(36,44)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6),(2,5),(3,4),(7,12),(8,11),(9,10),(13,24),(14,23),(15,22),(16,21),(17,20),(18,19),(25,37),(26,42),(27,41),(28,40),(29,39),(30,38),(31,43),(32,48),(33,47),(34,46),(35,45),(36,44)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O 3 4A4B4C4D4E4F4G4H4I6A6B6C6D···6I6J12A12B12C
order122222222222222234444444446666···66121212
size1111222244666612122444666612122224···48888

39 irreducible representations

dim111111111122222444
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2S3D4D6D6D62+ 1+4S3×D4D46D6
kernelC248D6Dic34D4D6⋊D4Dic3⋊D4C232D6C23.14D6C123D4C3×C22≀C2C2×S3×D4C22×C3⋊D4C22≀C2C3⋊D4C22⋊C4C2×D4C24C6C22C2
# reps122212112218331142

Matrix representation of C248D6 in GL6(ℤ)

-100000
0-10000
00-1000
000-100
00001-2
00000-1
,
1-20000
0-10000
001000
000100
00001-2
00000-1
,
100000
010000
001000
000100
0000-10
00000-1
,
-100000
0-10000
001000
000100
0000-10
00000-1
,
100000
1-10000
00-1-100
001000
000010
00001-1
,
-100000
0-10000
00-1-100
000100
0000-10
0000-11

G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,-2,-1],[1,0,0,0,0,0,-2,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,-2,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,1,0,0,0,0,0,-1,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,1] >;

C248D6 in GAP, Magma, Sage, TeX

C_2^4\rtimes_8D_6
% in TeX

G:=Group("C2^4:8D6");
// GroupNames label

G:=SmallGroup(192,1149);
// by ID

G=gap.SmallGroup(192,1149);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,1571,297,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^6=f^2=1,a*b=b*a,e*a*e^-1=f*a*f=a*c=c*a,a*d=d*a,f*b*f=b*c=c*b,e*b*e^-1=b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽